The use of ultrasonography in pregnancy in the current pandemic of Zika virus

Sankalp Yadav1,*, Gautam Rawal2

1General Duty Medical Officer- II, Dept. of Medicine & TB, Chest Clinic Moti Nagar, North Delhi Municipal Corporation, New Delhi, 2Attending Consultant, Dept. of Respiratory Intensive Care, Max Super Specialty Hospital, Saket, New Delhi

*Corresponding Author:
Email: drsankalpyadav@gmail.com

Keywords: Newborn; Ultrasonography; Zika virus

The world is facing a pandemic in progress due to an emerging arbovirus of the Flaviviridae family called Zika virus (ZIKV)1. ZIKV is a mosquito-borne flavivirus2,3. The paucity of literature and non-availability of clear guidelines has led to panic, especially among the pregnant women. The current situation in some of the countries is so grave that the health advisors have even asked to postpone the pregnancy to avoid the cases of fetal anomalies4. And the fetal anomaly that has raised alarms worldwide is the microcephaly5.

The countries with ZIKV cases on the rise are yet to develop any clear management or prevention plan so as to counter the microcephaly and other birth defects in the newborns. The Centers for Disease Control and Prevention (CDC) has issued certain guidelines that include the use of ultrasonography (USG) to detect the fetal anomaly early in pregnancy6. However, this is only the interim way and is not backed by scientific data based on large scale studies, which will establish the fact that the USG is a very sensitive and specific way to predict the fetal outcomes. In a prenatal study conducted earlier in the absence of ZIKV the USG was found to accurately predict the microcephaly only in 57% of the cases as compared to the total neonatal microcephaly6.

The fetal USG is a normal routine exercise in obstetrics and is performed between 18-20 weeks of gestation6,7. At this stage the fetal anomalies like microcephaly can be detected, but the same is difficult due to fetal motion and position6. Thus, the exact time to conduct an ultrasound screening for fetal microcephaly is not known. Also, in such cases where the USG is unable to detect any fetal anomaly the presence of other findings like intracranial calcifications before 22 weeks could well be a predictive indicator. The CDC recommends that the ideal time to perform USG to detect fetal anomalies in ZIKV infected countries could be around late second or early third trimester6. Besides, the frequency of USG can be increased based on the clinical findings like microcephaly. The diagnosis of the fetal microcephaly due to ZIKV is established by early USG findings supported by amniocentesis and RT-PCR of the amniotic fluid to detect the ZIKV RNA6.

The USG is the safe method and has been a routine part of the pregnant women’s check-up. If used appropriately than it has been considered as safe for the fetus, mother and the neonates by the various well known medical organizations (American College of Radiology, Society of Maternal and Fetal Medicine, and the American College of Obstetricians and Gynecologists)6. The use of MRI is not indicated in the routine obstetrics practice unless there is a rare high risk pregnancy and the routine USG findings needs correlation to make the diagnosis6. Thus the use of USG to predict any congenital anomaly in the fetus is absolutely indicated and if required the frequency could be increased for early diagnosis and management especially in the areas of ZIKV infection. Besides, the proper distribution of healthcare information on ZIKV is the duty of all and thus, all the collaborators i.e. public and private including the NGO’s like HIFA2015, etc. should play an active and an important role8-11. If all the stakeholders do not work in unison, then the effects of an emerging virus like ZIKV on the countries with poor health care budget and with low per capita income will be really devastating12-18.

Conflicts of interest: None declared

Acknowledgements: None

References

7. 18-20 Week Screening Pregnancy Ultrasound. Available at: Indian Journal of Immunology and Respiratory Medicine, July-September 2016;1(3):53-54